Metallothioneins protect cytosolic creatine kinases against stress induced by nitrogen-based oxidants.
نویسندگان
چکیده
The formation of intracellular nitrogen-based oxidants has important physiological and pathological consequences. CK (creatine kinase), which plays a key role in intracellular energy metabolism, is a main target of low concentrations of oxidative and nitrative stresses. In the present study, the interaction between cytosolic CKs [MM-CK (muscle-type CK) and BB-CK (brain-type CK)] and MTs [metallothioneins; hMT2A (human MT-IIA) and hMT3 (human MT-III)] were characterized by both in vitro and intact-cell assays. MTs could successfully protect the cytosolic CKs against inactivation induced by low concentrations of PN (peroxynitrite) and NO both in vitro and in hMT2A-overexpressing H9c2 cells and hMT3-knockdown U-87 MG cells. Under high PN concentrations, CK formed granule-like structures, and MTs were well co-localized in these aggregated granules. Further analysis indicated that the number of cells containing the CK aggregates negatively correlated with the expression levels of MTs. In vitro experiments indicated that MTs could effectively protect CKs against aggregation during refolding, suggesting that MT might function as a chaperone to assist CK re-activation. The findings of the present study provide direct evidence of the connection between the two well-characterized intracellular systems: the precisely balanced energy homoeostasis by CKs and the oxidative-stress response system using MTs.
منابع مشابه
Key role of PKC and Ca in EGF protection of microtubules and intestinal barrier against oxidants
Banan, A., J. Z. Fields, Y. Zhang, and A. Keshavarzian. Key role of PKC and Ca21 in EGF protection of microtubules and intestinal barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 280: G828–G843, 2001.—Using monolayers of human intestinal (Caco-2) cells, we showed that growth factors (GFs) protect microtubules and barrier integrity against oxidative injury. Studies in nongastroi...
متن کاملKey role of PKC and Ca2+ in EGF protection of microtubules and intestinal barrier against oxidants.
Using monolayers of human intestinal (Caco-2) cells, we showed that growth factors (GFs) protect microtubules and barrier integrity against oxidative injury. Studies in nongastrointestinal cell models suggest that protein kinase C (PKC) signaling is key in GF-induced effects and that cytosolic calcium concentration ([Ca2+](i)) is essential in cell integrity. We hypothesized that GF protection i...
متن کاملIn Vivo Protective Effects of Diosgenin against Doxorubicin-Induced Cardiotoxicity
Doxorubicin (DOX) induces oxidative stress leading to cardiotoxicity. Diosgenin, a steroidal saponin of Dioscorea opposita, has been reported to have antioxidant activity. Our study was aimed to find out the protective effect of diosgenin against DOX-induced cardiotoxicity in mice. DOX treatment led to a significant decrease in the ratio of heart weight to body weight, and increases in the bloo...
متن کاملNeuroprotective Effect of Oral Administration of Creatine against 6-Hydroxydopamine Toxicity in Experimental Model of Parkinson's Disease
Background & Aims: With regard to the neuroprotective effect of creatine in some neurological disorders like cerebral ischemia, this study was conducted to evaluate the effect of creatine in an experimental model of Parkinson’s disease (PD). Involvement of oxidative stress was also assessed. Methods: In this experimental study, male rats (n = 40) were divided into 5 groups, i.e. sham-operated (...
متن کاملDiminution of Oxidative Damage to Human Erythrocytes and Lymphocytes by Creatine: Possible Role of Creatine in Blood
Creatine (Cr) is naturally produced in the body and stored in muscles where it is involved in energy generation. It is widely used, especially by athletes, as a staple supplement for improving physical performance. Recent reports have shown that Cr displays antioxidant activity which could explain its beneficial cellular effects. We have evaluated the ability of Cr to protect human erythrocytes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 441 2 شماره
صفحات -
تاریخ انتشار 2012